The ribonucleotide reductase R1 homolog of murine cytomegalovirus is not a functional enzyme subunit but is required for pathogenesis.
نویسندگان
چکیده
Ribonucleotide reductase (RNR) is the key enzyme in the biosynthesis of deoxyribonucleotides. Alpha- and gammaherpesviruses express a functional enzyme, since they code for both the R1 and the R2 subunits. By contrast, betaherpesviruses contain an open reading frame (ORF) with homology to R1, but an ORF for R2 is absent, suggesting that they do not express a functional RNR. The M45 protein of murine cytomegalovirus (MCMV) exhibits the sequence features of a class Ia RNR R1 subunit but lacks certain amino acid residues believed to be critical for enzymatic function. It starts to be expressed independently upon the onset of viral DNA synthesis at 12 h after infection and accumulates at later times in the cytoplasm of the infected cells. Moreover, it is associated with the virion particle. To investigate direct involvement of the virally encoded R1 subunit in ribonucleotide reduction, recombinant M45 was tested in enzyme activity assays together with cellular R1 and R2. The results indicate that M45 neither is a functional equivalent of an R1 subunit nor affects the activity or the allosteric control of the mouse enzyme. To replicate in quiescent cells, MCMV induces the expression and activity of the cellular RNR. Mutant viruses in which the M45 gene has been inactivated are avirulent in immunodeficient SCID mice and fail to replicate in their target organs. These results suggest that M45 has evolved a new function that is indispensable for virus replication and pathogenesis in vivo.
منابع مشابه
Expression of an altered ribonucleotide reductase activity associated with the replication of murine cytomegalovirus in quiescent fibroblasts.
Ribonucleotide reductase (RNR) is an essential enzyme for the de novo synthesis of both cellular and viral DNA and catalyzes the conversion of ribonucleoside diphosphates into the corresponding deoxyribonucleoside diphosphates. The enzyme consists of two nonidentical subunits, termed R1 and R2, whose expression is very low in resting cells and maximal in S-phase cells. Here we show that murine ...
متن کاملCharacterization of heterosubunit complexes formed by the R1 and R2 subunits of herpes simplex virus 1 and equine herpes virus 4 ribonucleotide reductase.
We report on the separate PCR cloning and subsequent expression and purification of the large (R1) and small (R2) subunits from equine herpes virus type 4 (EHV-4) ribonucleotide reductase. The EHV-4 R1 and R2 subunits reconstituted an active enzyme and their abilities to complement the R1 and R2 subunits from the closely related herpes simplex virus 1 (HSV-1) ribonucleotide reductase, with the ...
متن کاملCooperative inhibition of RIP1-mediated NF-κB signaling by cytomegalovirus-encoded deubiquitinase and inactive homolog of cellular ribonucleotide reductase large subunit
Several viruses have been found to encode a deubiquitinating protease (DUB). These viral DUBs are proposed to play a role in regulating innate immune or inflammatory signaling. In human cytomegalovirus (HCMV), the largest tegument protein encoded by UL48 contains DUB activity, but its cellular targets are not known. Here, we show that UL48 and UL45, an HCMV-encoded inactive homolog of cellular ...
متن کاملIdentification of ribonucleotide reductase protein R1 as an activator of microtubule nucleation in Xenopus egg mitotic extracts.
Microtubule nucleation on the centrosome and the fungal equivalent, the spindle pole body (SPB), is activated at the onset of mitosis. We previously reported that mitotic extracts prepared from Xenopus unfertilized eggs convert the interphase SPB of fission yeast into a competent state for microtubule nucleation. In this study, we have purified an 85-kDa SPB activator from the extracts and iden...
متن کاملRole of the C terminus of the ribonucleotide reductase large subunit in enzyme regeneration and its inhibition by Sml1.
Ribonucleotide reductase maintains cellular deoxyribonucleotide pools and is thus tightly regulated during the cell cycle to ensure high fidelity in DNA replication. The Sml1 protein inhibits ribonucleotide reductase activity by binding to the R1 subunit. At the completion of each turnover cycle, the active site of R1 becomes oxidized and subsequently regenerated by a cysteine pair (CX2C) at it...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of virology
دوره 78 8 شماره
صفحات -
تاریخ انتشار 2004